10 research outputs found

    cis-Acting and trans-acting modulation of equine infectious anemia virus alternative RNA splicing

    Get PDF
    AbstractEquine infectious anemia virus (EIAV), a lentivirus distantly related to HIV-1, encodes regulatory proteins, EIAV Tat (ETat) and Rev (ERev), from a four-exon mRNA. Exon 3 of the tat/rev mRNA contains a 30-nucleotide purine-rich element (PRE) which binds both ERev and SF2/ASF, a member of the SR family of RNA splicing factors. To better understand the role of this element in the regulation of EIAV pre-mRNA splicing, we quantified the effects of mutation or deletion of the PRE on exon 3 splicing in vitro and on alternative splicing in vivo. We also determined the branch point elements upstream of exons 3 and 4. In vitro splicing of exon 3 to exon 4 was not affected by mutation of the PRE, and addition of purified SR proteins enhanced splicing independently of the PRE. In vitro splicing of exon 2 to exon 3 was dependent on the PRE; under conditions of excess SR proteins, either the PRE or the 5′ splice site of exon 3 was sufficient to activate splicing. We applied isoform-specific primers in real-time RT-PCR reactions to quantitatively analyze alternative splicing in cells transfected with rev-minus EIAV provirus constructs. In the context of provirus with wild-type exon 3, greater than 80% of the viral mRNAs were multiply spliced, and of these, less than 1% excluded exon 3. Deletion of the PRE resulted in a decrease in the relative amount of multiply spliced mRNA to about 40% of the total and approximately 39% of the viral mRNA excluded exon 3. Ectopic expression of ERev caused a decrease in the relative amount of multiply spliced mRNA to approximately 50% of the total and increased mRNAs that excluded exon 3 to about 4%. Over-expression of SF2/ASF in cells transfected with wild-type provirus constructs inhibited splicing but did not significantly alter exon 3 skipping

    Phenotypic and Genotypic Comparisons of Human T-Cell Leukemia Virus Type 1 Reverse Transcriptases from Infected T-Cell Lines and Patient Samplesâ–¿

    No full text
    It is well established that cell-free infection with human T-cell leukemia virus type 1 (HTLV-1) is less efficient than that with other retroviruses, though the specific infectivities of only a limited number of HTLV-1 isolates have been quantified. Earlier work indicated that a postentry step in the infectious cycle accounted for the poor cell-free infectivity of HTLV-1. To determine whether variations in the pol gene sequence correlated with virus infectivity, we sequenced and phenotypically tested pol genes from a variety of HTLV-1 isolates derived from primary sources, transformed cell lines, and molecular clones. The pol genes and deduced amino acid sequences from 23 proviruses were sequenced and compared with 14 previously published sequences, revealing a limited number of amino acid variations among isolates. The variations appeared to be randomly dispersed among primary isolates and proviruses from cell lines and molecular clones. In addition, there was no correlation between reverse transcriptase sequence and the disease phenotype of the original source of the virus isolate. HTLV-1 pol gene fragments encoding reverse transcriptase were amplified from a variety of isolates and were subcloned into HTLV-1 vectors for both single-cycle infection and spreading-infection assays. Vectors carrying pol genes that matched the consensus sequence had the highest titers, and those with the largest number of variations from the consensus had the lowest titers. The molecular clone from CS-1 cells had four amino acid differences from the consensus sequence and yielded infectious titers that were approximately eight times lower than those of vectors encoding a consensus reverse transcriptase

    Human T-Cell Leukemia Virus Type 1 Integration Target Sites in the Human Genome: Comparison with Those of Other Retroviruses▿ ‡

    No full text
    Retroviral integration into the host genome is not entirely random, and integration site preferences vary among different retroviruses. Human immunodeficiency virus (HIV) prefers to integrate within active genes, whereas murine leukemia virus (MLV) prefers to integrate near transcription start sites and CpG islands. On the other hand, integration of avian sarcoma-leukosis virus (ASLV) shows little preference either for genes, transcription start sites, or CpG islands. While host cellular factors play important roles in target site selection, the viral integrase is probably the major viral determinant. It is reasonable to hypothesize that retroviruses with similar integrases have similar preferences for target site selection. Although integration profiles are well defined for members of the lentivirus, spumaretrovirus, alpharetrovirus, and gammaretrovirus genera, no members of the deltaretroviruses, for example, human T-cell leukemia virus type 1 (HTLV-1), have been evaluated. We have mapped 541 HTLV-1 integration sites in human HeLa cells and show that HTLV-1, like ASLV, does not specifically target transcription units and transcription start sites. Comparing the integration sites of HTLV-1 with those of ASLV, HIV, simian immunodeficiency virus, MLV, and foamy virus, we show that global and local integration site preferences correlate with the sequence/structure of virus-encoded integrases, supporting the idea that integrase is the major determinant of retroviral integration site selection. Our results suggest that the global integration profiles of other retroviruses could be predicted from phylogenetic comparisons of the integrase proteins. Our results show that retroviruses that engender different insertional mutagenesis risks can have similar integration profiles
    corecore